Abstract. In this paper soil carbon, nitrogen and phosphorus concentrations and related elemental ratios, as well as and nitrogen and phosphorus stocks were investigated in 17 paired sites and in a regional survey encompassing more than 100 pasture soils in the Cerrado, Atlantic Forest, and Pampa, the three important biomes of Brazil. In the paired sites, elemental soil concentrations and stocks were determined in native vegetation, pastures and crop-livestock systems (CPS). Overall, there were significant differences in soil element concentrations and ratios between different land uses, especially in the surface soil layers. Carbon and nitrogen contents were lower, while phosphorus contents were higher in the pasture and CPS soils than in forest soils. Additionally, soil stoichiometry has changed with changes in land use. The soil C : N ratio was lower in the forest than in the pasture and CPS soils; and the carbon and nitrogen to available phosphorus ratio (PME) decreased from the forest to the pasture to the CPS soils. The average native vegetation soil nitrogen stocks at 0–10, 0–30 and 0–60 cm soil depth layers were equal to approximately 2.3, 5.2, 7.3 Mg ha−1, respectively. In the paired sites, nitrogen loss in the CPS systems and pasture soils were similar and equal to 0.6, 1.3 and 1.5 Mg ha−1 at 0–10, 0–30 and 0–60 cm soil depths, respectively. In the regional pasture soil survey, nitrogen soil stocks at 0–10 and 0–30 soil layers were equal to 1.6 and 3.9 Mg ha−1, respectively, and lower than the stocks found in the native vegetation of paired sites. On the other hand, the soil phosphorus stocks were higher in the CPS and pasture of the paired sites than in the soil of the original vegetation. The original vegetation soil phosphorus stocks were equal to 11, 22, and 43 kg ha−1 in the three soil depths, respectively. The soil phosphorus stocks increased in the CPS systems to 30, 50, and 63 kg ha−1, respectively, and in the pasture pair sites to 22, 47, and 68 kg ha−1, respectively. In the regional pasture survey, the soil phosphorus stocks were lower than in the native vegetation, and equal to 9 and 15 kg ha−1 at 0–10 and 0–30 depth layer. The findings of this paper illustrate that land-use changes that are currently common in Brazil alter soil concentrations, stocks and elemental ratios of carbon, nitrogen and phosphorus. These changes could have an impact on the subsequent vegetation, decreasing soil carbon, increasing nitrogen limitation, but alleviating soil phosphorus deficiency.