a b s t r a c tThe silviculture of hybrid poplars and other fast-growing tree species is a promising solution to reduce the pressure on natural forests while maintaining wood supplies to industries. However, hybrid poplars are very sensitive to competing vegetation and to inadequate soil conditions and fertility. Possible management tools include mechanical site preparation (MSP), vegetation control (VC), and fertilization. Experimental plantations of hybrid poplars (one clone, Populus balsamea × Populus maximowiczii) were established at eight formerly forested sites on acidic soil in the southern boreal forest of Quebec, Canada. The objective was to test the response of hybrid poplars to the interaction of several silvicultural tools, which has been rarely done. Four MSP treatments (in decreasing order of intensity: mounding, harrowing, heavy disk trenching, light disk trenching) and a control (unprepared) were all combined with four different frequencies of plant competition control by brushing (from never up to once a year). Fertilization with N or N + P was also tested in three selected MSP treatments. After five years, hybrid poplar tree growth among MSP treatments increased in the following order: unprepared < light disk trenching < heavy disk trenching < harrowing < mounding. MSP was also essential in favouring early tree survival, as illustrated by mortality rates of over 20% in unprepared plots and below 5% in all other MSP treatments. The effect of competition control on hybrid poplar growth was greatest in the less intensive MSP treatments, where competing vegetation was the most abundant. On the contrary, fertilization effect was significant only in the most intensive MSP (mounding). Moreover, neither fertilization nor VC could compensate for inadequate soil preparation. Of all the silvicultural treatments tested, mounding provided the best tree growth despite a nitrogen and carbon impoverished surface soil.