Canary seed flour is a new food ingredient that the United States Food and Drug Administration (FDA) and Health Canada recently granted Generally Regarded as Safe (GRAS) status. Stability in nutritional composition and functional properties is an essential characteristic of food ingredients for consistency in nutritional quality and performance in processing. This work assessed the effect of genotypic and environmental variation on the nutritional (protein, starch, amylose, oil, dietary fiber, minerals and fat-soluble vitamins) and pasting (as measured in viscosity (peak, trough, breakdown, final, and setback), peak time, and pasting temperatures) properties of Canary seed. The samples included four Canary seed varieties grown in randomized complete block design experiments at one location for two growing seasons. In general, the nutritional composition of Canary seed flour was not affected by genotype, growing year, and their interaction except for starch content, which was significantly affected by the growing year (p < 0.0001), and iron content, which was affected by genotypic variation (p < 0.0001). The pasting properties of Canary seed flour were significantly (p < 0.001) affected by both genotypic and growing year variation but not their interaction. Our results suggest that the food industry should measure starch and iron content prior to processing to ensure consistency in nutritional labeling. Also, for those applications where starch pasting properties are essential, the manufacturer should consider measuring the RVA pasting viscosities for every batch of raw material. The results have provided the baseline knowledge of which nutritional or functional properties of Canary seed flour can be improved through breeding and agronomy programs to ensure the reliability of Canary seed as an ingredient.