Mixed farming systems constitute a large proportion of agricultural production in the tropics, and pro vide multiple benefits for the world's poor. However, our understanding of the functioning of these sys tems is limited. Modeling offers the best approach to quantify outcomes from many interacting causal variables in these systems. The objective of this study was to develop an integrated crop-livestock model to assess biophysical and economic consequences of farming practices exhibited in sheep systems of Yucatán state, Mexico. A Vensim™ dynamic stock-flow feedback model was developed to integrate sci entific and practical knowledge of management, flock dynamics, sheep production, partitioning of nutri ents, labor, and economic components. The model accesses sheep production and manure quantity and quality data generated using the Small Ruminant Nutrition System (SRNS), and interfaces on a daily basis with an Agricultural Production Systems Simulator (APSIM) model that simulates weather, crop, and soil dynamics. Model evaluation indicated that the integrated model adequately represents the complex interactions that occur between farmers, crops, and livestock.