The microstructure of cement pastes is important to understand the effect of some parameters in the hydration process. In this context, this study had as objective to evaluate the effect of different water/binder (w/b) ratios in the hydration process of cementitious pastes produced with and without incorporation of silica fume and metakaolin. The pastes were obtained with water/binder ratios of 0.3, 0.4 e 0.5, with replacement, by weight, of Portland cement for silica fume and metakaolin, in the contents of 10% and 20%, respectively. It was performed the X-ray diffraction test of the pastes in the ages of 1, 3, 7, and 28 days, to evaluate the hydration evolution of the cementitious materials. According to the results obtained, it was observed that the cementitious pastes presented similar mineralogical phases, except for the pastes containing metakaolin due to the formation of new aluminate phases. With the increase of the water/binder ratio, the pozzolanic reactions and hydration occurred in greater proportion, standing out the metakaolin with greater reactivity.