2022
DOI: 10.1093/bjs/znac242.031
|View full text |Cite
|
Sign up to set email alerts
|

O031 Machine learning models in renal transplantation: a systematic review and meta-analysis of predictive performance in graft outcomes

Abstract: Introduction Kidney transplantation (KT) is currently the renal replacement therapy of choice for most patients with end-stage kidney disease. Despite many advancements, the variations in outcome and frequent occurrence of graft failure continue to pose important clinical and research challenges. The aim of this study was to carry out a systematic review of the current application of Machine Learning (ML) models in KT and perform a meta-analysis of these models in the prediction of graft outc… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(3 citation statements)
references
References 0 publications
0
2
0
1
Order By: Relevance
“…Los modelos de aprendizaje automático tienen una alta capacidad de predicción en trasplante de riñón, mortalidad después de cirugía cardíaca o predicción de resultados quirúrgicos en cirugía colorrectal (22,24) Diagnóstico Los modelos de IA muestran un rendimiento comparable al de radiólogos y cirujanos expertos en diagnóstico de fracturas o aflojamiento protésico en artroplastia de cadera y rodilla (25,26)…”
Section: Predicciónunclassified
“…Los modelos de aprendizaje automático tienen una alta capacidad de predicción en trasplante de riñón, mortalidad después de cirugía cardíaca o predicción de resultados quirúrgicos en cirugía colorrectal (22,24) Diagnóstico Los modelos de IA muestran un rendimiento comparable al de radiólogos y cirujanos expertos en diagnóstico de fracturas o aflojamiento protésico en artroplastia de cadera y rodilla (25,26)…”
Section: Predicciónunclassified
“…In total, 29 distinct machine learning algorithms were employed [4]. The machine learning-based models achieved a sensitivity and speci city of 0.81 (95 percent c.i.…”
Section: Introductionmentioning
confidence: 99%
“…0.76 to 0.86) and 0.81 (95 percent c.i. 0.74 to 0.86), respectively [4]. Large-scale studies have analysed parameters such as acute rejection, delayed graft function, patient survival, and graft survival after kidney transplantation [5][6][7].…”
Section: Introductionmentioning
confidence: 99%