Obesity is becoming a global epidemic and is a risk factor for breast cancer. Environmental enrichment (EE), a model recapitulating an active lifestyle, leads to leanness, resistance to diet-induced obesity (DIO) and cancer. One mechanism is the activation of the hypothalamic–sympathoneural–adipocyte (HSA) axis. This results in the release of norepinephrine onto adipose tissue inducing a drop of leptin. This study aimed to test the effects of EE on breast cancer onset and progression while considering the effect of leptin by utilizing the transgenic MMTV-PyMT model as well as several models of varied leptin signaling. EE was highly effective at reducing weight gain, regardless of the presence of leptin. However, the effects of EE on tumor progression were dependent on leptin signaling. EE decreased leptin and reduced mammary tumor growth rate in MMTV-PyMT spontaneous and DIO transplantation models; in contrast, the absence of leptin in ob/ob mice resulted in increased tumor growth likely due to elevated norepinephrine levels. Our results suggest that the microenvironment is critical in breast tumorigenesis and that the drop in leptin is an important peripheral mediator of the EE anti-breast cancer effects, offsetting the potential pro-tumorigenic effects of norepinephrine responding to a complex environment.