The initiation of a spatially and temporally limited inflammation is essential for tissue and bone remodeling by the periodontal ligament (PdL) located between teeth and alveolar bone. Obesity-associated hyperlipidemic changes may impair PdL fibroblast (PdLF) functions, disturbing their inflammatory response to mechanical stress such as those occurring during orthodontic tooth movement (OTM). Recently, we reported an attenuated pro inflammatory response of human PdLF (HPdLF) to compressive forces when stimulated with monounsaturated oleic acid (OA). Fatty acids, including OA, could serve as alternative source of acetyl-CoA, thereby affecting epigenetic histone marks such as histone 3 lysine acetylation (H3Kac) in a lipid metabolism-dependent manner. In this study, we therefore aimed to investigate the extent to which OA exerts its anti-inflammatory effect via changes in H3Kac. Six-hour compressed HPdLF showed increased H3Kac when cultured with OA. Inhibition of histone deacetylases resulted in a comparable IL10 increase as observed in compressed OA cultures. In contrast, inhibition of histone acetyltransferases, particularly p300/CBP, in compressed HPdLF exposed to OA led to an inflammatory response comparable to compressed control cells. OA-dependent increased association of H3Kac to IL10 promoter regions in force-stressed HPdLF further strengthened the assumption that OA exhibits its anti-inflammatory properties via modulation of this epigenetic mark. In conclusion, our study strongly suggests that obesity-related hyperlipidemia affect the functions of PdL cells via alterations in their epigenetic code. Since epigenetic inhibitors are already widely used clinically, they may hold promise for novel approaches to limit obesity-related risks during OTM.