2014
DOI: 10.1016/j.scitotenv.2014.04.048
|View full text |Cite
|
Sign up to set email alerts
|

OBIA based hierarchical image classification for industrial lake water

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
3
0
3

Year Published

2015
2015
2024
2024

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 13 publications
(6 citation statements)
references
References 12 publications
0
3
0
3
Order By: Relevance
“…In the multi resolution segmentation process, the input parameters scale and homogeneity namely compactness and shape were used. This approach is carried out by starting with segmentation or separation of objects (Labib & Harris, 2018;Sari & Kushardono, 2016;Uca Avci et al, 2014). After doing this step, the vegetation and non-vegetation classes will be generated.…”
Section: Methodsmentioning
confidence: 99%
“…In the multi resolution segmentation process, the input parameters scale and homogeneity namely compactness and shape were used. This approach is carried out by starting with segmentation or separation of objects (Labib & Harris, 2018;Sari & Kushardono, 2016;Uca Avci et al, 2014). After doing this step, the vegetation and non-vegetation classes will be generated.…”
Section: Methodsmentioning
confidence: 99%
“…Estos estudios usaron técnicas basadas en análisis de tonos y luminosidad de los niveles digitales. Se centran en los valores espectrales y en su mayoría ignoran el contexto de vecindad (Li, Zang, Zhang, Li & Wu, 2014;Uca Avci et al, 2014).…”
Section: Revista Perspectiva Geográficaunclassified
“…Este método permite modelar la superficie terrestre mediante el análisis espacial, topológico y jerárquico de los datos. Su principal diferencia con los métodos espectrales hace referencia al cambio en la estructura de los datos a procesar, ya que su unidad de medida no es un pixel, sino una agrupación de pixeles que genera regiones que representan el paisaje (Uca Avci et al, 2014;Ma et al, 2017).…”
Section: Revista Perspectiva Geográficaunclassified
See 1 more Smart Citation
“…Technically, the various characteristics in the calculated segments, such as shape, texture, layer-based values, and the context of the object, are considered as the main factors of the classification process in the OBIA technique [23]. One of the most significant characteristics of the OBIA approach is the possibility of detecting and classifying targets bigger than pixels as image objects, which allows for the integration of a variety of spatial and spectral features, such as textural parameters, shape, neighborhood, and relations for modelling tasks [24]. Additionally, OBIA offers the ability of using the intrinsic properties of objects and the use of contextual or spatial behavior through the neighborhood or topological relationships between objects [25].…”
Section: Introductionmentioning
confidence: 99%