Recently, locust outbreaks around the world have destroyed agricultural and natural vegetation and caused massive damage endangering food security. Unusual heavy rainfalls in habitats of the desert locust (Schistocerca gregaria) and lack of monitoring due to political conflicts or inaccessibility of those habitats lead to massive desert locust outbreaks and swarms migrating over the Arabian Peninsula, East Africa, India and Pakistan. At the same time, swarms of the Moroccan locust (Dociostaurus maroccanus) in some Central Asian countries and swarms of the Italian locust (Calliptamus italicus) in Russia and China destroyed crops despite developed and ongoing monitoring and control measurements. These recent events underline that the risk and damage caused by locust pests is as present as ever and affects 100 million of human lives despite technical progress in locust monitoring, prediction and control approaches. Remote sensing has become one of the most important data sources in locust management. Since the 1980s, remote sensing data and applications have accompanied many locust management activities and contributed to an improved and more effective control of locust outbreaks and plagues. Recently, open-access remote sensing data archives as well as progress in cloud computing provide unprecedented opportunity for remote sensing-based locust management and research. Additionally, unmanned aerial vehicle (UAV) systems bring up new prospects for a more effective and faster locust control. Nevertheless, the full capacity of available remote sensing applications and possibilities have not been exploited yet. This review paper provides a comprehensive and quantitative overview of international research articles focusing on remote sensing application for locust management and research. We reviewed 110 articles published over the last four decades, and categorized them into different aspects and main research topics to summarize achievements and gaps for further research and application development. The results reveal a strong focus on three species—the desert locust, the migratory locust (Locusta migratoria), and the Australian plague locust (Chortoicetes terminifera)—and corresponding regions of interest. There is still a lack of international studies for other pest species such as the Italian locust, the Moroccan locust, the Central American locust (Schistocerca piceifrons), the South American locust (Schistocerca cancellata), the brown locust (Locustana pardalina) and the red locust (Nomadacris septemfasciata). In terms of applied sensors, most studies utilized Advanced Very-High-Resolution Radiometer (AVHRR), Satellite Pour l’Observation de la Terre VEGETATION (SPOT-VGT), Moderate-Resolution Imaging Spectroradiometer (MODIS) as well as Landsat data focusing mainly on vegetation monitoring or land cover mapping. Application of geomorphological metrics as well as radar-based soil moisture data is comparably rare despite previous acknowledgement of their importance for locust outbreaks. Despite great advance and usage of available remote sensing resources, we identify several gaps and potential for future research to further improve the understanding and capacities of the use of remote sensing in supporting locust outbreak- research and management.