2007
DOI: 10.1117/12.717926
|View full text |Cite
|
Sign up to set email alerts
|

Object detection in hyperspectral imagery by using K-means clustering algorithm with pre-processing

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
4
0
2

Year Published

2008
2008
2019
2019

Publication Types

Select...
4
3

Relationship

1
6

Authors

Journals

citations
Cited by 7 publications
(6 citation statements)
references
References 0 publications
0
4
0
2
Order By: Relevance
“…The k-means algorithm belongs to cluster analysis, which is used to divide a set of objects into several groups according to the similarity of each other, where the similar objects constitute a group. The k-means algorithm has proved useful in clustering and segmentation of hyperspectral images [21][22][23].…”
Section: Image Repartitionmentioning
confidence: 99%
“…The k-means algorithm belongs to cluster analysis, which is used to divide a set of objects into several groups according to the similarity of each other, where the similar objects constitute a group. The k-means algorithm has proved useful in clustering and segmentation of hyperspectral images [21][22][23].…”
Section: Image Repartitionmentioning
confidence: 99%
“…It depends on the number of pixels and the complexity of the data. The iteration process continues until the cluster centroids converge [8,9]. There are two methods to initialize the cluster centers [10,11].…”
Section: K-means Algorithmmentioning
confidence: 99%
“…Yüzlerce dalga boyuna bakıldığında, farklı materyaller ışığı farklı şekillerde yansıttıklarından, yansıma spektrasına bakarak hiperspektral görüntülerde her bir pikselde hangi materyalin olduğunu anlamak mümkündür. Şekil 1'de örneklenen bu önemli bilgi, son yıllarda yeryüzü şekillerinin ayrıştırılması, maden yataklarının tespiti, tarım alanlarının analizi, savunma sanayiinde hedef tespiti ve benzeri birçok alanda kullanılmaktadır [1]- [6].…”
Section: Introductionunclassified