Gait analyses are the preliminary requirements to establish a navigation system of a humanoid robot. Designing a suitable indoor environment and its mapping are also important for the android localization, selection of a goal to achieve it and to perform the assigned tasks in its surroundings. This paper delineates the various gaits like walking, turning, obstacle overcoming and step up-down stairs for a humanoid system. The writing also explicates the design of the indoor test environment with the stationary obstacles placed on the navigation routes. The development of an efficient algorithm is also excogitated based on the various analyses of gaits and the predefined map of the test environment. As the navigation map is predetermined, the designed algorithm animates the humanoid to navigate by selecting an optimal route, depending on some external commands, to reach at the goal position. Finally the performance of the system is analysed based on the elapsed time of the navigation action with the validation of optimal navigation strategy where the designed algorithm demonstrates the robustness of its implementation and execution.