Abstract-Our dexterous hand is a fundmanetal human feature that distinguishes us from other animals by enabling us to go beyond grasping to support sophisticated in-hand object manipulation. Our aim was the design of a dexterous anthropomorphic robotic hand that matches the human hand's 24 degrees of freedom, under-actuated by seven motors. With the ability to replicate human hand movements in a naturalistic manner including in-hand object manipulation. Therefore, we focused on the development of a novel thumb and palm articulation that would facilitate in-hand object manipulation while avoiding mechanical design complexity. Our key innovation is the use of a tendon-driven ball joint as a basis for an articulated thumb. The design innovation enables our underactuated hand to perform complex in-hand object manipulation such as passing a ball between the fingers or even writing text messages on a smartphone with the thumb's end-point while holding the phone in the palm of the same hand. We then proceed to compare the dexterity of our novel robotic hand design to other designs in prosthetics, robotics and humans using simulated and physical kinematic data to demonstrate the enhanced dexterity of our novel articulation exceeding previous designs by a factor of two. Our innovative approach achieves naturalistic movement of the human hand, without requiring translation in the hand joints, and enables teleoperation of complex tasks, such as single (robot) handed messaging on a smartphone without the need for haptic feedback. Our simple, under-actuated design outperforms current state-ofthe-art prostheses or robotic and prosthetic hands regarding abilities that encompass from grasps to activities of daily living which involve complex in-hand object manipulation.