2021
DOI: 10.3390/s21165301
|View full text |Cite
|
Sign up to set email alerts
|

Object Manipulation with an Anthropomorphic Robotic Hand via Deep Reinforcement Learning with a Synergy Space of Natural Hand Poses

Abstract: Anthropomorphic robotic hands are designed to attain dexterous movements and flexibility much like human hands. Achieving human-like object manipulation remains a challenge especially due to the control complexity of the anthropomorphic robotic hand with a high degree of freedom. In this work, we propose a deep reinforcement learning (DRL) to train a policy using a synergy space for generating natural grasping and relocation of variously shaped objects using an anthropomorphic robotic hand. A synergy space is … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
3
0
3

Year Published

2021
2021
2025
2025

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 10 publications
(6 citation statements)
references
References 32 publications
0
3
0
3
Order By: Relevance
“…In an attempt to do so, the authors of [30] captured a data set of human-handobject contacts and developed an anthropomorphic grasping predictor on novel objects, similarly to [31]. The authors of [26], [27] exploited such concepts of human grasping contacts to develop deep learning approaches capable of generating grasps in simulation in a human-like manner using an anthropomorphic robot hand. The authors of [28] followed a similar contact-inspired methodology using a real-world robot-armhand system.…”
Section: B Human-like Dexterous Manipulationmentioning
confidence: 99%
“…In an attempt to do so, the authors of [30] captured a data set of human-handobject contacts and developed an anthropomorphic grasping predictor on novel objects, similarly to [31]. The authors of [26], [27] exploited such concepts of human grasping contacts to develop deep learning approaches capable of generating grasps in simulation in a human-like manner using an anthropomorphic robot hand. The authors of [28] followed a similar contact-inspired methodology using a real-world robot-armhand system.…”
Section: B Human-like Dexterous Manipulationmentioning
confidence: 99%
“…A partir dos dados exibidos na Tabela 1, conclui-se que 28,95% dos trabalhos estudados não utilizam manipuladores reais, mas simuladores para validar os experimentos e suas respectivas abordagens propostas. Estas abordagens foram: aprendizado de movimentos ponto a ponto [3], aprendizado com feedback interativo [27], algoritmos de interac ¸ão contínua [24], manipulac ¸ão de objetos [35], tarefa de abertura de porta [45], manipulac ¸ão coordenada de multi-robôs [20], controle neural adaptativo [42], controle de manipuladores [18], planejamento de trajetória [47], inspec ¸ão robótica [14] e controle de posic ¸ão [49]. [48,17,19,38] Não utilizou [3,27,24,35,45,20,42,18,47,14,49] Verifica-se também que a variedade de manipuladores robóticos utilizados é ampla, sendo o modelo UR3 da Universal Robots o mais utilizado entre estes em trabalhos com enfoque em: Tarefa peg-in-hole [6,4] e controle de brac ¸o duplo robótico [23]; seguido do PANDA [10,34], UR5 [31,22], RM-X52 [32,33] e IRB 1600 [1,2].…”
Section: A Manipuladores Robóticos E Simuladoresunclassified
“…Estas abordagens foram: aprendizado de movimentos ponto a ponto [3], aprendizado com feedback interativo [27], algoritmos de interac ¸ão contínua [24], manipulac ¸ão de objetos [35], tarefa de abertura de porta [45], manipulac ¸ão coordenada de multi-robôs [20], controle neural adaptativo [42], controle de manipuladores [18], planejamento de trajetória [47], inspec ¸ão robótica [14] e controle de posic ¸ão [49]. [48,17,19,38] Não utilizou [3,27,24,35,45,20,42,18,47,14,49] Verifica-se também que a variedade de manipuladores robóticos utilizados é ampla, sendo o modelo UR3 da Universal Robots o mais utilizado entre estes em trabalhos com enfoque em: Tarefa peg-in-hole [6,4] e controle de brac ¸o duplo robótico [23]; seguido do PANDA [10,34], UR5 [31,22], RM-X52 [32,33] e IRB 1600 [1,2]. Além disso, 3 trabalhos fizeram o uso de manipuladores produzidos em laboratório, customizados ou com pec ¸as impressas em 3D, implementados em: Controle de articulac ¸ões robóticas [36], planejamento de movimento [46] e mapeamento de controlador de brac ¸o robótico [37].…”
Section: A Manipuladores Robóticos E Simuladoresunclassified
“…In robotics, application of reinforcement learning (RL) is a topic that is given significant research importance [23][24][25][26][27]. The application of Reinforcement learning is mostly used for solving challenges in perception, navigation, and control problems.…”
Section: Related Workmentioning
confidence: 99%