Design guidelines for implementing viscous dampers to buildings have been broadly included in seismic design codes worldwide. Although the relationship between the damping coe±cient of viscous dampers and the added damping ratio to the structure has been theoretically studied, the process of distributing the damping coe±cient onto each story of a building has not been regulated by the codes. For practical applications, some distribution methods have been previously proposed. However, no comparison has been made between these proposed methods considering the controllability and design economy. In this paper, two search methods based on the genetic algorithms (GAs) are adopted to examine the optimal distribution of damping coe±cients. The results are then compared with a variety of existing distribution methods. A comparison is made for the distribution methods assuming the same added damping ratio for Int. J. Str. Stab. Dyn. Downloaded from www.worldscientific.com by UNIVERSITY OF IOWA on 09/11/16. For personal use only.the structure. Three two-dimensional frames are adopted in the comparison: a regular moment frame, a moment frame with a soft-story, and a setback building. The results indicated that similar seismic response reduction can be achieved by using di®erent distribution methods if the supplemental damping ratio is the same, while the optimal story damping coe±cient can be obtained by using the proposed optimization method. Moreover, the \story shear strain energy to e±cient stories" (SSSEES) method, among others, o®ers advantages in terms of seismic reduction e±ciency, economical design, and practical application simplicity.