2014
DOI: 10.1142/s0218001414550106
|View full text |Cite
|
Sign up to set email alerts
|

Object Recognition Based on Bag of Features and a New Local Pattern Descriptor

Abstract: Bag of Features (BoF) has gained a lot of interest in computer vision. Visual codebook based on robust appearance descriptors extracted from local image patches is an effective means of texture analysis and scene classification. This paper presents a new method for local feature description based on gray-level difference mapping called Mean Local Mapped Pattern (M-LMP). The proposed descriptor is robust to image scaling, rotation, illumination and partial viewpoint changes. The training set is composed of rota… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
2
0
4

Year Published

2016
2016
2020
2020

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 13 publications
(6 citation statements)
references
References 11 publications
0
2
0
4
Order By: Relevance
“…In contrast, the local descriptors are robust to clutter but cannot capture the global characteristics of the image [18,19]. An alternate feature representation strategy, such as Visual-Bag-of-Words (BoW), captures the global characteristics of the image through encoding a set of local features, which makes them robust to scale and clutter [20,21]. For example, in texture-based classification, the global texture pattern of the image is captured by the frequencies of the co-occurrence of the local texture patterns.…”
Section: Introductionmentioning
confidence: 99%
“…In contrast, the local descriptors are robust to clutter but cannot capture the global characteristics of the image [18,19]. An alternate feature representation strategy, such as Visual-Bag-of-Words (BoW), captures the global characteristics of the image through encoding a set of local features, which makes them robust to scale and clutter [20,21]. For example, in texture-based classification, the global texture pattern of the image is captured by the frequencies of the co-occurrence of the local texture patterns.…”
Section: Introductionmentioning
confidence: 99%
“…A terceira contribuição foi o desenvolvimento do descritor de textura baseado em fusão de características Completed Mean Local Mapped Pattern (CMLMP). O descritor proposto é baseado na metodologia de extração de características complementares da imagem, representadas por três componentes, proposta na formulação do descritor CLBP (GUO; ZHANG; ZHANG, 2010), associada à regra de extração de características do descritor M-LMP (FERRAZ et al, 2014).…”
Section: Objetivos E Contribuiçõesunclassified
“…Em concordância com o que foi exposto nos capítulos anteriores, sabe-se que: S1. a fusão de informações complementares de diferentes descritores possibilita a obtenção de resultados superiores ao melhor resultado dentre os obtidos pela aplicação dos descritores individuais; (FERRAZ et al, 2014). Como é composto por três diferentes componentes, Sinal (CMLMP_S), Magnitude (CMLMP_M) e Centro (CMLMP_C), é possível representar a textura por diferentes vetores de características, cada um resultado de uma combinação específica das respectivas componentes.…”
Section: Descritores De Textura Baseados Em Fusão De Característicasunclassified
See 2 more Smart Citations