2016
DOI: 10.12928/telkomnika.v14i2.2754
|View full text |Cite
|
Sign up to set email alerts
|

Object Recognition Based on Maximally Stable Extremal Region and Scale-Invariant Feature Transform

Abstract: For the defect in describing affine and blur invariable of scale-invariant feature transform (SIFT) at large viewpoint variation, a new object recognition method is proposed in this paper IntroductionIn the object recognition with complicated background or occlusion, local feature is better than global feature in stability, repeatability and authenticability and it has been widely applied in image matching, machine vision and other fields in recent years. This paper mainly makes in-depth research to the detect… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2020
2020
2022
2022

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 12 publications
0
1
0
1
Order By: Relevance
“…Berbeda dari deteksi sudut di bagian terakhir, MSER menggunakan konsep yang mirip DAS untuk mendapatkan daerah yang stabil secara lokal. Algoritma DAS dalam pengolahan gambar adalah terutama digunakan dalam segmentasi gambar dan fokus pada "tingkat air" gambar tingkat abu abu ketika daereah bergabung, tetapi daerah wilayah tidak stabil sementara MSER fokus pada daerah "permukaan air" ketika daerah daerah tersebut stabil [5].…”
Section: ) Mserunclassified
“…Berbeda dari deteksi sudut di bagian terakhir, MSER menggunakan konsep yang mirip DAS untuk mendapatkan daerah yang stabil secara lokal. Algoritma DAS dalam pengolahan gambar adalah terutama digunakan dalam segmentasi gambar dan fokus pada "tingkat air" gambar tingkat abu abu ketika daereah bergabung, tetapi daerah wilayah tidak stabil sementara MSER fokus pada daerah "permukaan air" ketika daerah daerah tersebut stabil [5].…”
Section: ) Mserunclassified
“…The Normalized Direct Linear Transformation (NDLT) algorithm is used to match two images after feature points matching is completed (Guo, 2009). Compared to the DLT algorithm (Guo, 2009;Abdel-Aziz et al, 2015), the NDLT algorithm has an invariance property of similarity transformation while having high calculation accuracy. The algorithm needs to perform the orthogonal transformation of the matched feature points before DLT to calculate the projection matrix and adjust the images.…”
Section: Ndlt Algorithmmentioning
confidence: 99%