We develop Bayesian reference analyses for linear regression models when the errors follow an exponential power distribution. Specifically, we obtain explicit expressions for reference priors for all the six possible orderings of the model parameters and show that, associated with these six parameters orderings, there are only two reference priors. Further, we show that both of these reference priors lead to proper posterior distributions. Furthermore, we show that the proposed reference Bayesian analyses compare favorably to an analysis based on a competing noninformative prior. Finally, we illustrate these Bayesian reference analyses for exponential power regression models with applications to two datasets. The first application analyzes per capita spending in public schools in the United States. The second application studies the relationship between sold home videos versus profits at the box office. MSC: 62F15; 62F35; 62J05