Stereo depth estimation has become an attractive topic in the computer vision field. Although various algorithms strive to optimize the speed and the precision of estimation, the energy cost of a system is also an essential metric for an embedded system. Among these various algorithms, Semi-Global Matching (SGM) has been a popular choice for some real-world applications because of its accuracy-and-speed balance. However, its power consumption makes it difficult to be applied to an embedded system. Thus, we propose a robust stereo matching system, RT-libSGM, working on the Xilinx Field-Programmable Gate Array (FPGA) platforms. The dedicated design of each module optimizes the speed of the entire system while ensuring the flexibility of the system structure. Through an evaluation on a Zynq FPGA board called M-KUBOS, RT-libSGM achieves state-of-the-art performance with lower power consumption. Compared with the benchmark design (libSGM) working on the Tegra X2 GPU, RT-libSGM runs more than 2× faster at a much lower energy cost.