Keywords help readers to understand the idea of a document quickly. Unfortunately, considerable time and effort are often needed to come up with a good set of keywords manually. This research focused on generating keywords from a document automatically using phrase chunking. Firstly, we collected part of speech patterns from a collection of documents. Secondly, we used those patterns to extract candidate keywords from the abstract and the content of a document. Finally, keywords are selected from the candidates based on the number of words in the keyword phrases and some scenarios involving candidate reduction and sorting. We evaluated the result of each scenario using precision, recall, and F-measure. The experiment results show: i) shorter-phrase keywords with string reduction extracted from the abstract and sorted by frequency provides the highest score, ii) in every proposed scenario, extracting keywords using the abstract always presents a better result, iii) using shorter-phrase patterns in keywords extraction gives better score in comparison to using all phrase patterns, iv) sorting scenarios based on the multiplication of candidate frequencies and the weight of the phrase patterns offer better results.