SummaryDuring embryonic development and in metastatic cancers, cells detach from the epithelium and migrate with persistent directionality. Directional cell migration is also crucial for the regeneration and maintenance of the epithelium and impaired directional migration is linked to chronic inflammatory diseases. Despite its significance, the mechanisms controlling epithelial cell migration remain poorly understood. Villin is an epithelial-cell-specific actin modifying protein that regulates epithelial cell plasticity and motility. In motile cells villin is associated with the highly branched and the unbranched actin filaments of lamellipodia and filopodia, respectively. In this study we demonstrate for the first time that villin regulates directionally persistent epithelial cell migration. Functional characterization of wild-type and mutant villin proteins revealed that the ability of villin to self-associate and bundle actin as well as its direct interaction with phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P 2 ] regulates villin-induced filopodial assembly and directional cell migration. Our findings suggest that convergence of different signaling cascades could spatially restrict villin activity to areas of high PtdIns(4,5)P 2 and F-actin concentration to assemble filopodia. Furthermore, our data reveal the ability of villin to undergo actin-and PtdIns(4,5)P 2 -induced self-association, which may be particularly suited to coalesce and reorganize actin bundles within the filopodia.