Objectives: The aim of this study was to investigate the diagnostic value of computerized tomography (CT) features of small intestinal stromal tumors in terms of their degree of risk. Methods: The clinical data and CT data of 107 patients with small intestinal stromal tumors confirmed by surgery and pathology in our hospital from June 2012 to October 2020 were selected. According to the results of postoperative pathological risk, the patients were divided into high-risk and low-risk groups, wherein 67 cases were in high-risk group and 40 cases were in the low-risk group The maximum diameter, solid component plain scan, arterial phase CT value, venous phase CT value, and delayed phase CT value of the two groups were measured, and the enhancement degree of arterial phase, venous phase, delayed CT value, and lesion enhancement mode were calculated. The difference between the two groups was compared. An independent sample t-test was used to compare quantitative indices, and the chi-squared test or Fisher’s exact test was used for qualitative index comparison. A receiver operating characteristic (ROC) curve was used to evaluate the diagnostic value of the arterial phase CT value, venous phase CT value, delayed phase CT value, arterial phase enhancement degree, venous phase enhancement degree, delayed phase enhancement degree, and the enhanced net value-added in the risk degree of SBGISTs. The relationship between preoperative imaging findings and tumor risk was retrospectively analyzed. Results: Univariate analysis showed that there were significant differences in the lesion location, growth pattern, lesion ulcer, necrotic cystic degeneration, lobulation, boundary with surrounding tissues, plain scan density and lesion enhancement mode, CT value in arterial phase, increment in arterial phase, CT value in venous phase, increment in venous phase, CT value in delayed phase, increment in delayed phase, and enhancement value in lesion between the two groups (P < 0.05); there were no significant differences in sex, age, calcification, bleeding, clinical symptoms, and CT value (P > 0.05). The ROC curve analysis showed that the area under the curve (AUC) of the long diameter of the lesion was 0.959 (P = 0.000), the optimal critical point of the ROC curve was the lesion ≥ 4.80 cm, the sensitivity was 88.1%, the specificity was 97.5%, and the accuracy was 91.6%; for the low-risk group, the AUC was 0.788 (the largest, P = 0.000), the sensitivity was 77.5%, the specificity was 70.1%, and the accuracy was 72.9%. Multivariate analysis showed that non-uniform density (P = 0.030; odds ratio [OR]: 12.544; 95% confidence interval [CI]: 1.269–123.969), arterial phase CT value (P = 0.024; OR: 10.790; 95% CI: 1.374–84.754), and lesion length (P = 0.000; OR: 648.694; 95% CI: 40.541–10,379.714) were risk factors for SBGISTs. Conclusions: The CT features of small intestinal stromal tumors have certain characteristics, which can help to grade the risk of small intestinal stromal tumors before surgery.