Recent gravitational wave events have suggested the existence of near-solar-mass black holes which cannot be formed via stellar evolution.
This has opened up a tantalizing possibility of future detections of both black holes and naked singularities in this mass range. Existence of naked singularities is a topical and fundamental physics issue, but their formation mechanism is not yet clear. Here, we show that some white dwarfs can realistically transmute into black holes and naked singularities with a wide range of near- and sub-solar-mass values by capturing
asymmetric or non-self-annihilating primordial dark matter (PDM) particles. We argue that, while a type Ia supernova due to the accumulation of dark matter at the core of a white dwarf could also be a possibility, the transmutation of a white dwarf into a black hole or a naked singularity is a viable consequence of the capture of non-self-annihilating PDM particles.
These white dwarf transmutations can have a significant role in probing the physics of dark matter and compact objects, and could be tested using the rates and locations of mergers over the cosmological time scale.