Fractures are widely distributed in the subsurface and are crucial for hydrocarbon, CCS, offshore infrastructure (windfarms), and geothermal seismic surveys. Seismic anisotropy has been widely used to characterize fractures and has been shown to be sensitive to background matrix porosities in theoretical studies. An understanding of the effects of background porosity on seismic anisotropy could improve seismic characterization in different fractured reservoirs. Based on synthetic rocks with controlled fractures, we conducted laboratory experiments to investigate the influence that background porosity has on P-wave anisotropy and shear wave splitting. A set of rocks containing the same fracture density (0.06) with varying porosities of 15.3%, 22.1%, 26.1% and 30.8% were constructed. The P- and S-wave velocities were measured at 0.5 MHz as the rocks were water saturated. The results show that when porosity increased from 15.3% to 22.1%, P-wave anisotropy and shear wave splitting exhibited slight fluctuations. However, when porosity continued to increase to 30.8%, P-wave anisotropy declined sharply, whereas shear wave splitting stayed nearly constant. The measured results were compared with predictions from equivalent medium theories. Qualitative agreements were found between the theoretical predictions and the measured results. In the Eshelby–Cheng model, an increase in porosity reduces fracture-induced perturbation in the normal direction of the fracture, resulting in lower P-wave anisotropy. In the Gurevich model, an increase in porosity can reduce the compressional stiffness in parallel directions to a larger extent than that in perpendicular directions, thus leading to lower P-wave anisotropy.