The F center in alkali halides is a well-known prototype of a strongly coupled localized electron-phonon system. This colour center is one of the long studied targets in the field of photophysics because it is simple but rich in variety. Steady-state spectroscopy, such as modulation spectroscopy and Raman scattering spectroscopy, has elucidated the strength of the electron-phonon coupling in the (meta-)stable state, i.e. the ground state and the relaxed excited state. Picosecond spectroscopy has improved understanding of the state mixing in the transient state. Owing to recent developments of ultrafast lasers with pulse widths shorter than oscillation periods of phonons, it has been possible to perform real-time observation of lattice vibration, and the understanding of the transient state has been remarkably expanded. In this paper, we review early and present studies on dynamics of electron-phonon coupling at the F center, especially recent real-time observations on the dynamics of nuclear wave packets in the excited state of the F center in KI, KBr, KCl and RbCl. These real-time observations reveal (i) spatial extension of the electronic wave function of a trapped electron, (ii) the difference between the coupled phonons in the ground state and the excited state, (iii) diabatic transition between the adiabatic potential energy surfaces and (iv) anharmonicity of the potential energy surface.