Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
As the key hardware unit of computing in memory, 3D NAND flash memory has been the focus of the artificial intelligence (AI) era due to its high efficiency in processing massive and diverse data, which is superior to the conventional von-Neumann architecture. To push the realization of computing in a memory chip, 3D flash memory with a large on/off current ratio and simple fabrication technology is highly demanded. Here, we first report that 3D NAND flash memory with a high on/off current ratio can be obtained by tuning the width of the a-Si:H channel without a junction. Compared with the traditional 3D NAND flash memory consisting of a polysilicon channel, the junctionless a-Si:H channel can be obtained at low temperature without doping, which can reduce the difficulty induced by the diffusion and the distribution of the doping atoms. Only by tuning the width of the junctionless a-Si:H channel from 0.3 to 0.2 μm, the on/off current ratio increases from 102 to 106. The analysis of ESR and Fourier transform infrared spectroscopy reveals that the positive charge induced by the Si dangling bonds in the narrower a-Si:H channel results in the formation of a thicker depletion layer, which is beneficial to efficiently control the negative charge in the a-Si:H channel. The strong coupling of the thinner charge layer and the electric field of gate bias is the origin of the high on/off current ratio from the narrower a-Si:H channel. Our successful fabrication of 3D NAND flash memory based on the junctionless a-Si:H channel with a high on/off current ratio provides a new way to construct a hardware unit for computing in-memory.
As the key hardware unit of computing in memory, 3D NAND flash memory has been the focus of the artificial intelligence (AI) era due to its high efficiency in processing massive and diverse data, which is superior to the conventional von-Neumann architecture. To push the realization of computing in a memory chip, 3D flash memory with a large on/off current ratio and simple fabrication technology is highly demanded. Here, we first report that 3D NAND flash memory with a high on/off current ratio can be obtained by tuning the width of the a-Si:H channel without a junction. Compared with the traditional 3D NAND flash memory consisting of a polysilicon channel, the junctionless a-Si:H channel can be obtained at low temperature without doping, which can reduce the difficulty induced by the diffusion and the distribution of the doping atoms. Only by tuning the width of the junctionless a-Si:H channel from 0.3 to 0.2 μm, the on/off current ratio increases from 102 to 106. The analysis of ESR and Fourier transform infrared spectroscopy reveals that the positive charge induced by the Si dangling bonds in the narrower a-Si:H channel results in the formation of a thicker depletion layer, which is beneficial to efficiently control the negative charge in the a-Si:H channel. The strong coupling of the thinner charge layer and the electric field of gate bias is the origin of the high on/off current ratio from the narrower a-Si:H channel. Our successful fabrication of 3D NAND flash memory based on the junctionless a-Si:H channel with a high on/off current ratio provides a new way to construct a hardware unit for computing in-memory.
As an ultrawide bandgap (∼4.1 eV) semiconductor, single crystalline SrSnO3 (SSO) has promising electrical properties for applications in power electronics and transparent conductors. The device performance can be limited by heat dissipation issues. However, a systematic study detailing its thermal transport properties remains elusive. This work studies the temperature-dependent thermal properties of a single crystalline SSO thin film prepared with hybrid molecular beam epitaxy. By combining time-domain thermoreflectance and Debye–Callaway modeling, physical insight into thermal transport mechanisms is provided. At room temperature, the 350-nm SSO film has a thermal conductivity of 4.4 W m−1 K−1, ∼60% lower than those of other perovskite oxides (SrTiO3, BaSnO3) with the same ABO3 structural formula. This difference is attributed to the low zone-boundary frequency of SSO, resulting from its distorted orthorhombic structure with tilted octahedra. At high temperatures, the thermal conductivity of SSO decreases with temperature following a ∼T−0.54 dependence, weaker than the typical T−1 trend dominated by the Umklapp scattering. This work not only reveals the fundamental mechanisms of thermal transport in single crystalline SSO but also sheds light on the thermal design and optimization of SSO-based electronic applications.
Amorphous solids are a type of condensed matter characterized by the absence of long-range order in their lattice structure. However, they still exhibit short- or medium-range order, which contributes to their versatile local and global electronic and chemical properties. Recently, 2D amorphous solids have gained attention for their exceptional mechanical and electronic features, which are unattainable in conventional crystalline materials. This review highlights the physical properties of ultrathin 2D amorphous solids, which are formed through covalent bonding and feature polyhedron structures with shared edges and corners. Two notable examples of 2D amorphous solids include honeycomb-structured nanosheets with mixed hybrid orbitals and layered materials with reduced coordination numbers of the elements. We provide an in-depth discussion of (1) the phase transition between crystalline and amorphous phases in 2D solids, (2) advanced synthetic methods for producing high-quality amorphous films with precise thickness control, and (3) the potential applications of sub-nanometer scale 2D amorphous solids. Lastly, we explore their potential to revolutionize the design of highly versatile electronic devices at sub-nanometer scales. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.