Triplet excitons are key players in multi-excitonic processes like singlet fission and triplet-triplet annihilation based photon upconversion, which may be useful in next-generation photovoltaic devices, photocatalysis and bioimaging. Here, we present an overview of experimental and theoretical work on triplet energy transfer, with a focus on triplet transport in thin films. We start with the theory describing Dexter-mediated triplet energy transfer and the fundamental parameters controlling this process. Then we summarize current experimental methods used to measure the triplet exciton diffusion length. Finally, the use of hierarchically ordered structures to improve the triplet diffusion length is presented, before concluding with an outlook on the remaining challenges.