In this paper, we compare some popular dark energy models under the assumption of a flat universe by using the latest observational data including the type Ia supernovae Constitution compilation, the baryon acoustic oscillation measurement from the Sloan Digital Sky Survey, the cosmic microwave background measurement given by the seven-year Wilkinson Microwave Anisotropy Probe observations and the determination of H 0 from the Hubble Space Telescope. Model comparison statistics such as the Bayesian and Akaike information criteria are applied to assess the worth of the models. These statistics favor models that give a good fit with fewer parameters. Based on this analysis, we find that the simplest cosmological constant model that has only one free parameter is still preferred by the current data. For other dynamical dark energy models, we find that some of them, such as the α dark energy, constant w, generalized Chaplygin gas, Chevalliear-Polarski-Linder parametrization, and holographic dark energy models, can provide good fits to the current data, and three of them, namely, the Ricci dark energy, agegraphic dark energy, and Dvali-Gabadadze-Porrati models, are clearly disfavored by the data. 95.36.+x, 98.80.Es