High resolution X-ray spectroscopy of the hot gas in galaxy clusters has
shown that the gas is not cooling to low temperatures at the predicted rates of
hundreds to thousands of solar masses per year. X-ray images have revealed
giant cavities and shock fronts in the hot gas that provide a direct and
relatively reliable means of measuring the energy injected into hot atmospheres
by active galactic nuclei (AGN). Average radio jet powers are near those
required to offset radiative losses and to suppress cooling in isolated giant
elliptical galaxies, and in larger systems up to the richest galaxy clusters.
This coincidence suggests that heating and cooling are coupled by feedback,
which suppresses star formation and the growth of luminous galaxies. How jet
energy is converted to heat and the degree to which other heating mechanisms
are contributing, eg. thermal conduction, are not well understood. Outburst
energies require substantial late growth of supermassive black holes. Unless
all of the approximately 10E62 erg required to suppress star formation is
deposited in the cooling regions of clusters, AGN outbursts must alter
large-scale properties of the intracluster medium.Comment: 60 pages, 12 figures, to appear in 1997 Annual Reviews of Astronomy
and Astrophysics. This version supersedes the April 2007 version in Reviews
in Advance (references and minor corrections were added), and is similar to
the one scheduled to appear in Volume 45 of ARA