Diagnostic systems for fluctuation measurements in plasmas are, of necessity, evolving from simple one-dimensional (1D) systems to multidimensional systems due to the complexity of the magnetohydrodynamics (MHD) and turbulence physics of plasmas as illustrated by advanced numerical simulations. Using the recent significant advancements in millimeter wave imaging technology, microwave imaging reflectometry (MIR) and electron cyclotron emission imaging (ECEI), simultaneously measuring density and temperature fluctuations, have been developed for Toroidal EXperiment for Technology Oriented Research (TEXTOR). The MIR system was installed on Textor and the experiment was performed in September, 2003. Subsequent MIR campaigns have yielded poloidally resolved spectra and assessments of poloidal velocity. The 2D ECE imaging system (with a total of 128 channels), installed on TEXTOR in December, 2003, successfully captured the first true 2D images of T e fluctuations of m = 1 oscillations ("sawteeth") near the q ϳ 1 surface.