A B S T R A C T To assess the metabolic recovery of mitochondria after injury, we have monitored, in vivo and noninvasively, changes in the redox state of cytochrome (cyt) a,a3 in 35 rats after tissue hypoxia induced by rapid exsanguination to a mean arterial pressure of 30-35 mmHg. This level of mean arterial pressure was maintained for a shorter period of time in group I (n = 17) and a longer period of time in group II (n = 18), then the shed blood was returned by infusion. The surviving animals were observed for 2 more h before terminating the experiments. During exsanguination, reinfusion and recovery intervals brain tissue parameters of blood oxygenation, relative blood volume, and cyt a,a3 redox state were monitored continuously by spectrophotometry through the closed skull and intact skin. Group I had a high survival rate while group II had a very low survival rate. In both groups, with the onset of hypotension, there was a prompt rapid shift, followed by a slow continued progressive shift, of cyt a,a3 toward a more reduced state. The extent of recovery of cyt a,a3 following reinfusion was different in each group. In group I there was a rapid reoxidation of cyt a,a3 to a level above the base line (16±12%, mean±SEM). In contrast, the extent of reoxidation of cyt a,a3 in group II was significantly lower and stayed 31±6% below the base-line level. To further evaluate the mechanisms responsible for these observations, another related experiment was performed. 12 rats were subjected to shock and resuscitation as outlined for groups I and II. After death or killing of the animal, we measured, in vitro, oxygen