Putative hopanoid genes from Streptomyces peucetius were introduced into Escherichia coli to improve the production of squalene, an industrially important compound. High expression of hopA and hopB (encoding squalene/phytoene synthases) together with hopD (encoding farnesyl diphosphate synthase) yielded 4.1 mg/liter of squalene. This level was elevated to 11.8 mg/liter when there was also increased expression of dxs and idi, E. coli genes encoding 1-deoxy-D-xylulose 5-phosphate synthase and isopentenyl diphosphate isomerase.Squalene, an industrially important compound obtained primarily from the liver oil of deep-sea sharks and whales, is an important ingredient in skin cosmetics due to its photoprotective role (2, 7). The decreased cancer risk associated with high olive oil consumption could result from high squalene content (12, 16). Squalene has a chemopreventive effect on colon cancer (14). Moreover, squalene has wide applications in fine chemicals, magnetic tape, and low-temperature lubricants and as an additive in animal feed (1).The use of shark liver oil is limited, due to the presence of environmental pollutants, such as polychlorinated biphenyls, heavy metals, and methylmercury residues, as well as an unpleasant fishy odor and taste (17,19). Moreover, the presence of similar compounds, such as cholesterol, in the oils from marine animal liver can make squalene purification difficult. In addition, squalene production is limited by uncertain availability because of international concern for the protection of marine animals. Squalene has also been obtained from plant sources (4,10,11,18), but very few methods can produce sufficient quantities at the desired purity level for pharmaceutical and industrial applications (6). The use of engineered microbial cell factories for the biosynthesis of squalene may be a suitable alternative to address these issues.In the genome project for Streptomyces peucetius ATCC 27952, a cluster of genes which comprises five open reading frames, encoding hopanoid biosynthesis, has been detected and annotated. Even though these open reading frames share sequence homology with genes involved in hopanoid biosynthesis, no plausible hopanoid products have been isolated from S. peucetius in all laboratory cultures. Therefore, the hopanoid biosynthetic gene cluster of S. peucetius was considered "cryptic" in the present study. We were interested in activating the so-called "cryptic" hopanoid biosynthetic gene cluster of S. peucetius to produce pharmaceutically important compounds by using genetic engineering tools. Isoprenoid production in Escherichia coli has been extensively studied and reviewed (5,8,9,15,20,21), but very few reports detail squalene formation in E. coli by the use of exogenous genes (13). In the present study, we introduced three cryptic genes (hopABD) from the hopanoid biosynthesis gene cluster from S. peucetius that catalyzed squalene production and also modulated the 2-C-methyl-Derythritol 4-phosphate pathway in E. coli to enhance squalene production (Fig. 1).Bact...