Unfolded protein, a disordered structure found before folding of newly synthesized protein or after protein denaturation, is a substrate for binding by many cellular factors such as heat-stable proteins, chaperones, and many small molecules. However, it is challenging to directly probe such interactions in physiological solution conditions because proteins are largely in their folded state. In this work we probed small molecule binding to mechanically unfolded polyprotein using sodium dodecyl sulfate (SDS) as an example. The effect of binding is quantified based on changes in the elasticity and refolding of the unfolded polyprotein in the presence of SDS. We show that this single-molecule mechanical detection of binding to unfolded polyprotein can serve, to our knowledge, as a novel label-free assay with a great potential to study many factors that interact with unfolded protein domains, which underlie many important biological processes.