The application of industrial wireless sensor networks (IWSNs) frequently appears in modern industry, and it is usually to deploy a large quantity of sensor nodes in the monitoring area. This way of deployment improves the robustness of the IWSNs but introduces many redundant nodes, thereby increasing unnecessary overhead. The purpose of this paper is to increase the lifetime of IWSNs without changing the physical facilities and ensuring the coverage of sensors as much as possible. Therefore, we propose a quantum clone grey wolf optimization (QCGWO) algorithm, design a sensor duty cycle model (SDCM) based on real factory conditions, and use the QCGWO to optimize the SDCM. Specifically, QCGWO combines the concept of quantum computing and the clone operation for avoiding the algorithm from falling into a local optimum. Subsequently, we compare the proposed algorithm with the genetic algorithm (GA) and simulated annealing (SA) algorithm. The experimental results suggest that the lifetime of the IWSNs based on QCGWO is longer than that of GA and SA, and the convergence speed of QCGWO is also faster than that of GA and SA. In comparison with the traditional IWSN working mode, our model and algorithm can effectively prolong the lifetime of IWSNs, thus greatly reducing the maintenance cost without replacing sensor nodes in actual industrial production.