We consider a system of differential equations on a Banach space X given by: x'(t) = Ax(t) + u(t)f(t, x(t)), x(0) = x0, where A is an infinitesimal generator of a C0-semigroup, f : R0+ × X → X is a locally Lipschitz function, and u ∈ Lp([0, T], R) is a control defined on [0, T] with 1 < p ≤ ∞. Using the Compactness Principle and the generalization of Gronwalls Lemma, the system is shown to be controllable for a γ-bounded function f. Another result of this study is the local existence and the uniqueness of the solution of the system for locally bounded function f through weighted ω-norm.