Hastalık teşhisi, tıp alanında karşılaşılan en önemli problemlerden biridir. Belirli bir hastalığın farklı türlerinin ve diğer hastalıklarla benzer semptomlarının olması hastalığın teşhisini zorlaştırmaktadır. Tiroit hastalığı çeşitlerinden biri olan hipotiroidi de bu sebeplerle teşhisi geciken ve hastaların yaşam kalitesini düşüren bir hastalıktır. Bu çalışmanın amacı, tanı sürecinde hastalara sorulan soru ve uygulanan test sonuçlarını kullanarak hipotiroidi hastalığının doğru teşhis oranını arttıracak veri madenciliği temelli bir sistem önermektir. Diğer amaç ise dolaylı olarak teşhis için kullanılan girişimsel testlerden oluşabilecek komplikasyonları azaltmaktır. Bu amaçlar doğrultusunda UCI makine öğrenmesi veri tabanında yer alan ve 151 tanesi hipotiroidi geri kalanı hipotiroidi olmayan toplam 3163 örnekten oluşan veri seti kullanılarak yeni örneklerin hipotiroidi olup olmadığı tahmin edilmiştir. Veri setindeki dengesiz dağılımı ortadan kaldırmak için veri setine farklı örnekleme teknikleri uygulanarak Lojistik Regresyon, K En Yakın Komşu ve Destek Vektör Makinesi sınıflandırıcıları ile hipotiroidi hastalığını teşhis edecek modeller oluşturulmuştur. Bu yönüyle, çalışma örnekleme yöntemlerinin hipotiroidi hastalığı teşhisi üzerindeki etkisini göstermiştir. Geliştirilen modeller içinde en yüksek performansı, aşırı örnekleme teknikleri uygulanan veri seti ile eğitilen Lojistik Regresyon sınıflandırıcısı vermiştir. Bu sınıflandırıcı ile elde edilen en iyi sonuçlar; doğruluk oranı için %97.8, F-Skor değeri için %82.26, eğri altında kalan alan için %93.2 ve Matthews korelasyon katsayısı için de %81.8'dir.