We demonstrate that high-quality solid-state 17O (I = 5/2) NMR spectra can be successfully obtained for paramagnetic coordination compounds in which oxygen atoms are directly bonded to the paramagnetic metal centers. For complexes containing V(III) (S = 1), Cu(II) (S = 1/2), and Mn(III) (S = 2) metal centers, the 17O isotropic paramagnetic shifts were found to span a range of more than 10000 ppm. In several cases, high-resolution 17O NMR spectra were recorded under very fast magic-angle spinning (MAS) conditions at 21.1 T. Quantum chemical computations using density functional theory (DFT) qualitatively reproduced the experimental 17O hyperfine shift tensors.