2015
DOI: 10.1007/978-3-319-20466-6_20
|View full text |Cite
|
Sign up to set email alerts
|

Obtaining Classification Rules Using lvqPSO

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
2
0
2

Year Published

2018
2018
2022
2022

Publication Types

Select...
5
2
1

Relationship

2
6

Authors

Journals

citations
Cited by 10 publications
(4 citation statements)
references
References 12 publications
0
2
0
2
Order By: Relevance
“…Credit risk management is one of the most important concerns of financial companies, including the collection of relevant information about borrowers, which is used to decide whether to approve their credit applications. Lanzarini et al [102] proposed the LVQ-PSO algorithm by combining competitive neural networks with the PSO algorithm, which mines association rules by preprocessing the original data with the LVQ method and binary PSO algorithm. The simplified rules can assist the decision-maker in deciding whether to grant a loan or not.…”
Section: Risk Assessmentmentioning
confidence: 99%
“…Credit risk management is one of the most important concerns of financial companies, including the collection of relevant information about borrowers, which is used to decide whether to approve their credit applications. Lanzarini et al [102] proposed the LVQ-PSO algorithm by combining competitive neural networks with the PSO algorithm, which mines association rules by preprocessing the original data with the LVQ method and binary PSO algorithm. The simplified rules can assist the decision-maker in deciding whether to grant a loan or not.…”
Section: Risk Assessmentmentioning
confidence: 99%
“…In previous research works, we have combined a neural network and an optimization technique to obtain this type of model. [21][22][23][24] The solution presented then did not use fuzzy logic. The results obtained when applying it to the database used in the Ecuadorian financial market yielded an accuracy that was 1% lower than conventional methods; however, its simplicity made using it worth it.…”
Section: Related Workmentioning
confidence: 99%
“…Para lograr este objetivo se desarrolló un método basado en la técnica de optimización presentada en el capítulo 3. El método es capaz de construir, a partir de la información disponible, un conjunto de reglas de clasificación con tres características principales: precisión adecuada, baja cardinalidad y simplicidad del antecedente [Lanzarini et al, 2015a]. De esta forma se facilita la interpretación del modelo ayudando a la toma de decisiones.…”
Section: Conclusiones Finalesunclassified
“…El énfasis estuvo en alcanzar una buena cobertura utilizando un número reducido de reglas donde cada una de ellas posea un número mínimo de conjunciones en su antecedente. Esto ha dado como resultado varias publicaciones en las cuales puede obtenerse mayor detalle al respecto [Lanzarini et al, 2017;Jimbo Santana et al, 2017;Lanzarini et al, 2015c;Lanzarini et al, 2015b;Lanzarini et al, 2015a;Villa Monte et al, 2012].…”
Section: A4 Conclusionesunclassified