Abstract—The influence of the high-energy mechanical activation (HMA) time on the kinetics of solid-phase Spark Plasma Sintering (SPS) and the microstructure of a heavy tungsten alloy 90W–7Ni–3Fe has been studied. The density of the alloy 90W–7Ni–3Fe nonmonotonically, with a minimum, depends on the time of the HMA. The kinetics of the SPS of nanopowders has a two-stage character; the sintering intensity depends on the rate of Coble creep and the intensity of diffusion of W atoms in the crystal lattice of the nickel-based gama-phase.