2023
DOI: 10.4236/am.2023.147029
|View full text |Cite
|
Sign up to set email alerts
|

Obtaining Simply Explicit Form and New Properties of Euler Polynomials by Differential Calculus

Abstract: Utilization of the shift operator to represent Euler polynomials as polynomials of Appell type leads directly to its algebraic properties, its relations with powers sums; may be all its relations with Bernoulli polynomials, Bernoulli numbers; its recurrence formulae and a very simple formula for calculating simultaneously Euler numbers and Euler polynomials. The expansions of Euler polynomials into Fourier series are also obtained; the formulae for obtaining all m π as series on m k − and for expanding functio… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 10 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?