Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Generally, Shannon defined information entropy is used to measure information uncertainty, whereas, Onicescu defined information energy is used to measure information certainty. However, information energy and Shannon entropy display a dual relationship. Furthermore, the cumulative residual entropy is employed to estimate the information uncertainty by replacing the probability distribution function of Shannon entropy with the cumulative distribution function.Based on this, a new method to measure information certainty-cumulative residual information energy-is proposed and applied to image threshold segmentation. To overcome the shortcomings of complex calculation and the low efficiency of accumulated residual information energy, a recursive algorithm is used here to increase the running speed of image threshold segmentation. Our experimental results show that the proposed method outperforms the classical maximum entropy threshold method and other related threshold segmentation methods used for natural images and cell blood smear images.
Generally, Shannon defined information entropy is used to measure information uncertainty, whereas, Onicescu defined information energy is used to measure information certainty. However, information energy and Shannon entropy display a dual relationship. Furthermore, the cumulative residual entropy is employed to estimate the information uncertainty by replacing the probability distribution function of Shannon entropy with the cumulative distribution function.Based on this, a new method to measure information certainty-cumulative residual information energy-is proposed and applied to image threshold segmentation. To overcome the shortcomings of complex calculation and the low efficiency of accumulated residual information energy, a recursive algorithm is used here to increase the running speed of image threshold segmentation. Our experimental results show that the proposed method outperforms the classical maximum entropy threshold method and other related threshold segmentation methods used for natural images and cell blood smear images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.