The neuromodulation of the greater occipital nerve (GON) has proved effective to treat chronic refractory neurovascular headaches, in particular migraine and cluster headache. Moreover, animal studies have shown convergence of cervical and trigeminal afferents on the same territories of the upper cervical and lower medullary dorsal horn (DH), the so-called trigeminocervical complex (TCC), and recent studies in rat models of migraine and craniofacial neuropathy have shown that GON block or stimulation alter nociceptive processing in TCC. The present study examines in detail the anatomy of GON and its central projections in the rat applying different tracers to the nerve and quantifying its ultrastructure, the ganglion neurons subserving GON, and their innervation territories in the spinal cord and brainstem. With considerable intersubject variability in size, GON contains on average 900 myelinated and 3,300 unmyelinated axons, more than 90% of which emerge from C ganglion neurons. Unmyelinated afferents from GON innervates exclusively laminae I-II of the lateral DH, mostly extending along segments C . Myelinated fibers distribute mainly in laminae I and III-V of the lateral DH between C and C and, with different terminal patterns, in medial parts of the DH at upper cervical segments, and ventrolateral rostral cuneate, paratrigeminal, and marginal part of the spinal caudal and interpolar nuclei. Sparse projections also appear in other locations nearby. These findings will help to better understand the bases of sensory convergence on spinomedullary systems, a critical pathophysiological factor for pain referral and spread in severe painful craniofacial disorders.