Background
The dikaryotic stage dominates most of the life cycle in basidiomycetes, and each cell carries two different haploid nuclei. Accurate phasing of these two nuclear genomes and their interactions have long been of interest.
Results
We combine PacBio HiFi reads, Nanopore ultra-long reads, and Hi-C data to generate a complete, high-quality asymmetric dikaryotic genome of Tremella fuciformis Tr01, including Haplotypes A and B genomes. We assemble a meiotic haploid DBZ04 genome and detect three recombination events in these two haplotypes. We identify several chromosomal rearrangements that lead to differences in chromosome number, length, content, and sequence arrangement between these two haplotypes. Each nucleus contains a two-speed genome, harboring three accessory chromosomes and two accessory compartments that affect horizontal chromatin transfer between nuclei. We find few basidiospores are ejected from fruiting bodies of Tr01. Most monospore isolates sequenced belong to Tr01-Haplotype A genome architecture. More than one-third of monospore isolates carry one or two extra chromosomes including Chr12B and two new chromosomes ChrN1 and ChrN2. We hypothesize that homologous regions of seven sister chromatids pair into a large complex during meiosis, followed by inter-chromosomal recombination at physical contact sites and formation of new chromosomes.
Conclusion
We assemble two haplotype genomes of T. fuciformis Tr01 and provide the first overview of basidiomycetous genomes with discrete genomic architecture. Meiotic activities of asymmetric dikaryotic genomes result in formation of new chromosomes, aneuploidy of some daughter cells, and inviability of most other daughter cells. We propose a new approach for breeding of sporeless mushroom.