In the mining industry, one of the principal issues is the management of the waste generated during ore concentration, which represents a potential source of environmental pollution. The most acute issue originates from the mining heritage in the form of dumps formed of mining tailings that were created before the introduction of waste storage standards and may be located in urban areas. This research investigated this problem using the example of the tailings dump “Krasnaya Glinka”, located in a residential area of Pitkäranta (Karelia, Russia) in close proximity to the shoreline of Lake Ladoga. A complex approach, including the investigation of the natural water of the study area and tailings material and an experiment simulating the interaction of this material with atmospheric precipitation, allowed us to obtain the first data on the current status of the tailings dump and its surroundings and to identify environmental pollutants. This research used XRF, XRD, and EPMA analytical methods for assaying the tailings materials obtained from the dump and ion chromatography, potentiometric titration, ICP-MS, and AES for the water samples. The results show the influence of the tailings dump’s materials on the formation of the environmental impact—in the water from the area of the tailings dump, increased concentrations of chalcophilic elements are observed, for example, Zn up to 5028 µg/L. Based on this study of the tailings dump’s materials and the conducted experiment, an attempt is made to connect the chemical compositions shown in the natural water data with the specific mineral phases and processes occurring during supergene transformations in the tailings storage. As a result of the conducted research, it was found that despite more than 100 years of exposure of the tailings materials under natural factors, mostly atmospheric precipitation, equilibrium with the environment has not come. The processes of extracting toxic elements and carcinogenic mineral phases into the environment are continuing. In the process of studying the tailings materials, it was found that they are probably of economic interest as a technogenic source of W and Sn due to the contents of these components exceeding industrially significant values in the exploited fields.