Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This study investigates the downward motion of Intermediate E-F Layers (ILs) in the Brazilian low latitude sector through observation and modeling. Ionosonde data from São José dos Campos (SJC) and Palmas (PAL) were analyzed to investigate the seasonal variation of the IL parameters, including the virtual height (h'IL) and the top frequency (ftIL). The ILs primarily originated from F layer detachment followed by downward motion, peaking before 11 LT and disappearing well before sunset. Daily height variability ranged between 130 and 190 km, with peak frequencies around 4–5 MHz. Using meteor radar data as input, the Ionospheric E-region Model (MIRE) simulated diurnal and semidiurnal tides to analyze neutral wind effects on ILs descent. Model simulations for SJC (October 2008) and PAL (April and June 2009) revealed distinct wind oscillations influencing IL dynamics at heights below 140 km. In SJC, meridional wind shears controlled IL descent, with possible zonal wind interactions weakening ILs. Conversely, in PAL during April 2009, both zonal and meridional winds contributed to IL formation and altitude descent. However, discrepancies between observed and modeled descent rates suggest the need for considering additional atmospheric wave interactions in future modeling studies. June 2009 over PAL presented unique IL behavior, exhibiting a lower observed decay rate and daily height oscillations potentially linked to local modulations. Meanwhile, MIRE indicated that meridional wind shearing predominantly controlled IL descent in the morning, with zonal wind becoming relevant post-midday. These findings enhance our understanding of IL dynamics and their atmospheric drivers.
This study investigates the downward motion of Intermediate E-F Layers (ILs) in the Brazilian low latitude sector through observation and modeling. Ionosonde data from São José dos Campos (SJC) and Palmas (PAL) were analyzed to investigate the seasonal variation of the IL parameters, including the virtual height (h'IL) and the top frequency (ftIL). The ILs primarily originated from F layer detachment followed by downward motion, peaking before 11 LT and disappearing well before sunset. Daily height variability ranged between 130 and 190 km, with peak frequencies around 4–5 MHz. Using meteor radar data as input, the Ionospheric E-region Model (MIRE) simulated diurnal and semidiurnal tides to analyze neutral wind effects on ILs descent. Model simulations for SJC (October 2008) and PAL (April and June 2009) revealed distinct wind oscillations influencing IL dynamics at heights below 140 km. In SJC, meridional wind shears controlled IL descent, with possible zonal wind interactions weakening ILs. Conversely, in PAL during April 2009, both zonal and meridional winds contributed to IL formation and altitude descent. However, discrepancies between observed and modeled descent rates suggest the need for considering additional atmospheric wave interactions in future modeling studies. June 2009 over PAL presented unique IL behavior, exhibiting a lower observed decay rate and daily height oscillations potentially linked to local modulations. Meanwhile, MIRE indicated that meridional wind shearing predominantly controlled IL descent in the morning, with zonal wind becoming relevant post-midday. These findings enhance our understanding of IL dynamics and their atmospheric drivers.
Abstract. This work presents the daytime behavior of the intermediate layer (ILs) parameters (the virtual height – h'IL, and the top frequency – ftIL) over the low-latitude region of Cachoeria Paulista (CP, 22.42∘ S; 45∘ W, I: −34.59∘) during the 2009 deep solar minimum. Under such a unique condition, this research reveals the ILs' quiet state seasonal behavior as well as its responses to moderate changes in the geomagnetic activity. The main results show that even small variations of geomagnetic activity (quantified by the planetary Kp index) are able to modify the dynamics of the ILs parameters. For the first time, it was observed that during the summer, the h'IL decreases rapidly with the increase of geomagnetic activity, mainly in the early morning hours, while in the following hours, a smoothed rise of the IL was found in all seasons analyzed. Regarding the IL frequency, it was observed that after 12:00 LT, there is a tendency to decrease with the increase of magnetic disturbances, this characteristic being more intense after 16:00 LT for summer and winter. For the equinox, such variation was detected, however with half of the amplitude of the other seasons. In addition, the domain of the annual periodicity of the ftIL stands out, while the h'IL presents a semiannual component under the condition of geomagnetic quiet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.