Vibrio cholerae, the causative agent of Asiatic cholera, is a gram-negative motile bacterial species acquired via oral ingestion of contaminated food or water sources. Cholera has spread from the Indian subcontinent where it is endemic to involve nearly the whole world seven times during the past 185 years. V. cholerae serogroup O1, biotype El Tor, has moved from Asia to cause pandemic disease in Africa and South America during the past 35 years. A new serogroup, O139, appeared in south Asia in 1992, has become endemic there, and threatens to start the next pandemic. The facultative human pathogen V. cholerae represents a paradigm that evolved from environmental nonpathogenic strains by acquisition of virulence genes. The major virulence factors of V. cholerae, cholera toxin (CTX) encoded by the ctxAB genes residing in the genome of filamentous lysogenic bacteriophage (CTXɸ) and toxin coregulated pilus (TCP) encoded by vibrio pathogenicity island (VPI). CTX, a potent stimulator of adenylate cyclase, causes the intestine to secrete watery fluid rich in sodium, bicarbonate, and potassium, in volumes far exceeding the intestinal absorptive capacity, by ADP-ribosylation of the alpha subunit of the GTP-binding protein. Thus intestinal infection with V. cholerae results in the loss of large volumes of watery stool, leading to severe and rapidly progressing dehydration and shock. Without adequate and appropriate rehydration therapy, severe cholera kills about half of affected individuals. Today, cholera still remains a burden mainly for underdeveloped countries, which cannot afford to establish or to maintain necessary hygienic and medical facilities. During the last three decades, intensive research has been undertaken to unravel the virulence properties and to study the epidemiology of this significant human pathogen. This review provides an overview of the role of CTX in the occurrence of this disease in humans.