Toxic cyanobacteria became more widely recognized as a potential health hazard in the 1990s, and in 1998 the World Health Organization (WHO) first published a provisional Guideline Value of 1 μg L−1 for microcystin-LR in drinking-water. In this publication we compare risk assessment and risk management of toxic cyanobacteria in 17 countries across all five continents. We focus on the three main (oral) exposure vehicles to cyanotoxins: drinking-water, water related recreational and freshwater seafood. Most countries have implemented the provisional WHO Guideline Value, some as legally binding standard, to ensure the distribution of safe drinking-water with respect to microcystins. Regulation, however, also needs to address the possible presence of a wide range of other cyanotoxins and bioactive compounds, for which no guideline values can be derived due to insufficient toxicological data. The presence of microcystins (commonly expressed as microcystin-LR equivalents) may be used as proxy for overall guidance on risk management, but this simplification may miss certain risks, for instance from dissolved fractions of cylindrospermopsin and cyanobacterial neurotoxins. An alternative approach, often taken for risk assessment and management in recreational waters, is to regulate cyanobacterial presence – as cell numbers or biomass – rather than individual toxins. Here, many countries have implemented a two or three tier alert level system with incremental severity. These systems define the levels where responses are switched from Surveillance to Alert and finally to Action Mode and they specify the short-term actions that follow. Surface bloom formation is commonly judged to be a significant risk because of the elevated concentration of microcystins in a scum. Countries have based their derivations of legally binding standards, guideline values, maximally allowed concentrations (or limits named otherwise) on very similar scientific methodology, but underlying assumptions such as bloom duration, average body size and the amount of water consumed while swimming vary according to local circumstances. Furthermore, for toxins with incomplete toxicological data elements of expert judgment become more relevant and this also leads to a larger degree of variation between countries’ thresholds triggering certain actions. Cyanobacterial blooms and their cyanotoxin content are a highly variable phenomenon, largely depending on local conditions, and likely concentrations can be assessed and managed best if the specific conditions of the locality are known and their impact on bloom occurrence are understood. Risk Management Frameworks, such as for example the Water Safety Plan concept of the WHO and the ‘bathing water profile’ of the European Union are suggested to be effective approaches for preventing human exposure by managing toxic cyanobacteria from catchment to consumer for drinking water and at recreational sites.