2020
DOI: 10.1016/j.asoc.2019.105931
|View full text |Cite
|
Sign up to set email alerts
|

OCE-NGC: A neutrosophic graph cut algorithm using optimized clustering estimation algorithm for dermoscopic skin lesion segmentation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
16
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
8
1
1

Relationship

0
10

Authors

Journals

citations
Cited by 26 publications
(17 citation statements)
references
References 33 publications
0
16
0
1
Order By: Relevance
“…Al-Masni et al [2] proposed a Full Resolution Convolutional Network (FrCN) for the skin lesion segmentation, which learns full resolution features from each pixel of an input image. A segmentation method is realized by Hawas et al [36] for the neutrosophic graph coping with the constraints that included small data set, removal of artifacts, excessive data increase, and contrast stretching. They also confirmed that the CNN model's performance with a domain transfer feature is better than the CNNs with a deep layer network.…”
Section: Methods For Lesion Segmentationmentioning
confidence: 99%
“…Al-Masni et al [2] proposed a Full Resolution Convolutional Network (FrCN) for the skin lesion segmentation, which learns full resolution features from each pixel of an input image. A segmentation method is realized by Hawas et al [36] for the neutrosophic graph coping with the constraints that included small data set, removal of artifacts, excessive data increase, and contrast stretching. They also confirmed that the CNN model's performance with a domain transfer feature is better than the CNNs with a deep layer network.…”
Section: Methods For Lesion Segmentationmentioning
confidence: 99%
“…Although this technique offers advantages in terms of noise sensitivity and cluster initialization, it has drawbacks in terms of segmentation, which is caused by inappropriate data grouping. KMC and FCM were used in conjunction with bio-optimization techniques in [23][24][25], with the kernel function of the combined model being altered. FCM with Harmony Search Algorithm (FCM-HSA), FCM with Artificial Bee Colony (FCM-ABC), FCM with ant colony optimization (FCM-ACO), and FCM with genetic algorithm (FCM-GA) are just a few of the hybrid methodologies available.…”
Section: Literature Surveymentioning
confidence: 99%
“…Cụ thể, nhiều thuật toán mới ra đời đã chứng minh rằng phương pháp này là một hướng nghiên cứu đầy hứa hẹn trong cộng đồng nghiên cứu phân đoạn ảnh. Các phương pháp dựa trên lí thuyết đồ thị đã có nhiều ứng dụng quan trọng trong lĩnh vực thị giác máy tính, đặc biệt là các ứng dụng trong phân đoạn ảnh (Zhu, Zhang, Xu, & Deng, 2021;Hawas, Guo, Du, Polat, & Ashour, 2020;Bejar, Guimaraes, & Miranda, 2020;Wang, Oda, Hayashi, Yoshino, Yamamoto, Frangi, & Mori, 2020). Dựa trên các nguyên lí cấu trúc hình thức về mức độ tương đồng hoặc lân cận trong việc gom nhóm thị giác, đồ thị được chia thành các vùng tương ứng với một vùng hay đối tượng nào đó trong ảnh.…”
Section: E Hướng Tiếp Cận Phân Hoạch đồ Thịunclassified