Abstract. The Totten Ice Shelf (IS) has a large drainage basin, much of which is grounded below sea level, leaving the glacier vulnerable to retreat through the Marine Ice Shelf Instability mechanism. The ice shelf has also been shown to be sensitive to changes in calving rate, as a very small retreat of the calving front from its current position is predicted to cause a change in flow at the grounding line. Therefore understanding the processes behind calving on the Totten IS is key to predicting its future sea level rise contribution. Here we use the Helsinki Discrete Element Model (HiDEM) to show that calving on the Totten IS 15 is controlled not only by locally produced fractures at the calving front, but is also influenced by basal fractures which are likely produced at the grounding line. Our model results show that regrounding points may be key areas of basal crevasse production, and can produce basal crevasses in both an along and across flow orientation. As well as affecting calving, along flow basal crevasses at the grounding line may be a possible precursor to basal channels. We use two additional models to examine the evolution of basal fractures as they advect downstream, demonstrating that both strain and ocean melt have the 20 potential to deform narrow fractures into the broad basal features observed near the calving front. The wide range of factors which influence fracture patterns and calving on this glacier will be a challenge for predicting its future mass loss.