Abstract. In recent decades the decline of the Arctic sea ice has modified vertical momentum fluxes from the atmosphere to the ice and the ocean, thereby affecting the surface circulation. In the past ten years satellite altimetry has contributed to understand these changes. However, data from ice-covered regions require dedicated processing, originating inconsistency between ice-covered and open ocean regions in terms of biases, corrections and data coverage. Thus, efforts to generate consistent Arctic-wide datasets are still required to enable the study of the Arctic Ocean surface circulation at basin-wide scales. Here we provide and assess a monthly gridded dataset of sea surface height anomaly and geostrophic velocity. This dataset is based on Cryosat-2 observations over ice-covered and open ocean areas of the Arctic up to 88° N for the period 2011 to 2018, interpolated using the Data-Interpolating Variational Analysis (DIVA) method. Geostrophic velocity was not available north of 82° N before this study. To examine the robustness of our results, we compare the generated fields to one independent altimetry dataset and independent data of ocean bottom pressure, steric height and near-surface ocean velocity from moorings. Results from the comparison to near-surface ocean velocity show that our geostrophic velocity fields can resolve seasonal to interannual variability of boundary currents wider than about 50 km. We further discuss the seasonal cycle of sea surface height and geostrophic velocity in the context of previous literature. Large scale features emerge, i.e. Arctic-wide maximum sea surface height between October and January, with the highest amplitude over the shelves, and basin wide seasonal acceleration of Arctic slope currents in winter. We suggest that this dataset can be used to study not only the large scale sea surface height and circulation but also the regionally confined boundary currents. The dataset is available in netCDF format from PANGAEA at [data currently under review].